Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851773

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The risk factors for HCC include chronic hepatitis B and C virus infections, excessive alcohol consumption, obesity, metabolic disease, and aflatoxin exposure. In addition to these viral and environmental risk factors, individual genetic predisposition is a major determinant of HCC risk. Familial clustering of HCC has been observed, and a hereditary factor likely contributes to the risk of HCC development. The familial aggregation may depend on a shared environment and genetic background as well as the interactions of environmental and genetic factors. Genome-wide association studies (GWASs) are one of the most practical tools for mapping the patterns of inheritance for the most common form of genomic variation, single nucleotide polymorphisms. This approach is practical for investigating genetic variants across the human genome, which is affected by thousands of common genetic variants that do not follow Mendelian inheritance. This review article summarizes the academic knowledge of GWAS-identified genetic loci and their association with HCC. We summarize the GWASs in accordance with various chronic hepatitis virus infection statuses. This genetic profiling could be used to identify candidate biomarkers to refine HCC screening and management by enabling individual risk-based personalization and stratification. A more comprehensive understanding of the genetic mechanisms underlying individual predisposition to HCC may lead to improvements in the prevention and early diagnosis of HCC and the development of effective treatment strategies.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Predisposição Genética para Doença , Carcinoma Hepatocelular/genética , Estudo de Associação Genômica Ampla , Neoplasias Hepáticas/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Vírus de Hepatite
2.
EBioMedicine ; 74: 103712, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34839261

RESUMO

BACKGROUND: Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants. METHODS: We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-κB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells. FINDINGS: The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity. INTERPRETATION: Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Benzamidas/farmacologia , Tratamento Farmacológico da COVID-19 , Glicosilação/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Células HEK293 , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
ACS Synth Biol ; 10(8): 1830-1836, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34374512

RESUMO

Protein-level regulations have gained importance in building synthetic circuits, as they offer a potential advantage in the speed of operation compared to gene regulation circuits. In nature, localized protein degradation is prevalent in polarizing cellular signaling. We, therefore, set out to systematically investigate whether localized proteolysis can be employed to construct intracellular asymmetry in Escherichia coli. We demonstrate that, by inserting a cognate cleavage site between the reporter and C-terminal degron, the unstable reporter can be stabilized in the presence of the tobacco etch virus protease. Furthermore, the split protease can be functionally reconstituted by the PopZ-based polarity system to exert localized proteolysis. Selective stabilization of the unstable reporter at the PopZ pole can lead to intracellular asymmetry in E. coli. Our study provides complementary evidence to support that localized proteolysis may be a strategy for polarization in developmental cell biology. Circuits designed in this study may also help to expand the synthetic biology repository for the engineering of synthetic morphogenesis, particularly for processes that require rapid control of local protein abundance.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteólise , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Nat Commun ; 12(1): 888, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563962

RESUMO

The design principle of establishing an intracellular protein gradient for asymmetric cell division is a long-standing fundamental question. While the major molecular players and their interactions have been elucidated via genetic approaches, the diversity and redundancy of natural systems complicate the extraction of critical underlying features. Here, we take a synthetic cell biology approach to construct intracellular asymmetry and asymmetric division in Escherichia coli, in which division is normally symmetric. We demonstrate that the oligomeric PopZ from Caulobacter crescentus can serve as a robust polarized scaffold to functionalize RNA polymerase. Furthermore, by using another oligomeric pole-targeting DivIVA from Bacillus subtilis, the newly synthesized protein can be constrained to further establish intracellular asymmetry, leading to asymmetric division and differentiation. Our findings suggest that the coupled oligomerization and restriction in diffusion may be a strategy for generating a spatial gradient for asymmetric cell division.


Assuntos
Divisão Celular Assimétrica , Escherichia coli/citologia , Escherichia coli/metabolismo , Espaço Intracelular/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Polaridade Celular , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...